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non-linear Schrodinger model of bosons or fermions with 
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$ Graduate School, Chinese Academy of Sciences, Beijing, People’s Republic of China 

Received 25 March 1986, in final form 21 July 1986 

Abstract. The generalisation of the quantum inverse scattering method to the study of 
direct and inverse problems for the multicomponent non-linear Schrodinger model of bosons 
or fermions with repulsive coupling is made. Two sets of Yang-Baxter equations are solved 
to obtain commutation relations between the scattering state operators. The eigenfunctions 
have been constructed for the infinite number of conserved quantities and the eigenvalues 
of the first three conserved quantities-number of particles, momentum and energy-are 
obtained. The global Izergin-Korepin relations and the relations between the quantum 
Jost functions are derived, and from them, the quantum Gel‘fand-Levitan equations are 
established. Finally, the series expansion for the field operators in terms of the scattering 
state operators is written out explicitly. 

1. Introduction 

Since the advent of the quantum inverse scattering method ( Q I S M ) ,  the non-linear 
Schrodinger model has been extensively studied. It was solved originally for bosons 
with repulsive coupling independently by Sklyanin and Faddeev (1978), Sklyanin 
(1979), Thacker and Wilkinson (1979) and Honerkamp et a1 (1979). The quantum 
Gel’fand-Levitan equation in this case was established by Creamer el a1 (1980) and 

SGrosse (1979). The same model with attractive coupling was solved by Gockler (1981a) 
and the corresponding Gel’fand-Levitan equation was given by Gockler (1981b) and 
Smirnov (1982). Extension of this model to include the case of fermions with repulsive 
coupling was done by Pu and Zhao (1984). Various generalisations have also been 
made with different emphasis (Kulish 1980, 1985). 

The present paper generalises directly the works of Sklyanin (1979) and Pu and 
Zhao (1984) to the multicomponent non-linear Schrodinger model in the case of 
repulsive interaction for bosons or fermions. In particle theory this is equivalent to 
the generalisation to the case of higher spin. We adopt the continuum version of QISM 

used by Sklyanin (19791, which is more convenient for our purpose. 
The Hamiltonian of our model is equal to 
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where c > 0 is the coupling constant of repulsion. As a convention, the Latin subscript 
denotes that the component is 1, .  . . , N, while later in the text, Greek subscripts denote 
that the component is 1 , .  . . , N,  N + 1. Thus the dummy Latin indices mean the sum 
over 1 , .  . . , N. In order to include both cases for bosons and fermions in an unified 
single version, we introduce a characteristic index p in the formulae throughout the 
paper and let p = -1 for the case of bosons and p = 1 for the case of fermions. The 
commutation relations for the field operators are written in the form of 

[ui(x), uj(y)Ip = SijS(x-Y) 

[ u i ( x ) ,  uj(y)Ip = [ ~ l ( x ) ,  uj(y)Ip = O  (1.2) 

where [ , 3, means the commutator for p = -1 (bosons) and anticommutator for p = 1 
(fermions). 

The associated linear operator in Q I S M  is 

where E,, is a ( N  + 1) x ( N  + 1) matrix, for which all matrix elements are zero except 
that the element of a th  row and Pth column is equal to unity, and 

J = I N + l - 2 E N + l , N + l  (1.4) 

and where I, , ,  is the ( N  + 1) x ( N  + 1) unit matrix. The monodromy matrix T ( x ,  y l A )  
is defined by 

a - T(X, y lh)  = :L(x ,  A)T(x,  y l ~ ) :  
ax 

T ( x ,  ylh ) I Y = = ,  = IN+1  (1.5) 

where : : means normal product. As is known (Pu and Zhao 1984) in the case of 
femions L(x,  A )  is a supermatrix with L,,,, L N + I , N + I  as elements of even parity and 
L N + , , , ,  L , ,N+l  as elements of odd parity. We redefine the related operations of matrices 
in appendix 1 including both cases of bosons and fermions and collect some formulae 
that will be used in this work in appendix 2. 

Further, we define 

T‘-’ (x ,  A )  = lim T ( x ,  ylA)E(y, A )  , - --oi 

T‘”(x, A )  = lim E ( - y ,  A ) T ( y ,  x ~ A )  
Y - W  

T ( A )  = lim E(-x, A)T(x, y l A ) E ( y ,  A )  
x-m.y+ --3c 

where E ( x ,  A )  = exp(ifAJx). 
The Neumann expansions for the matrix elements of T(x,ylA) are obtained in a 

standard way. From the Neumann expansions we conclude that 
Tt,;’(x, A ) ,  Tl,%+l(~,  A), T ( G i l , , ( x ,  A ) ,  T , , ( A )  are analytic functions of A in the lower 
half plane, T ( N i l , N + I ( ~ ,  A ) ,  TELl,,(x, A ) ,  T : , i + , ( x ,  A ) ,  TN+I,N+l(A) are analytic in the 
upper half plane and TN+I,I(A),  T,,N+l(A) are defined only for real values of A. 
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2. Commutation relations 

(2.3) 

where 

P, = E,, o E ~ ~ ( - P ) P ( " ) P ( ~ )  

and the double Greek letters mean summation over 1, . . . , N, N + 1 by our convention. 
From (2.1) and (2.2), it follows that (Sklyanin 1979) 

from which we obtain commutation relations for finite volume. The commutation 
relations for infinite volume are obtained from (2.4) by a careful limiting process 
(Faddeev 1981) 

(2.5) 

where 

* i ra( A - CL ) EjJ 0 E N+ 1 ,  N + I i T a ( A  - CL ) E N  + I ,  N +  I @ Ej, 

Note that the matrices in (2.5) are of ( N  + 1)2 x ( N  + 1 ) *  and the rows or columns can 
be labelled by double indices. Further, we write a ( A )  for T N + I , N + I ( A )  and b j ( A )  for 
T N + l , j ( A ) .  C o m p a r i n g t h e ( ( N + l ,  N + l ) , ( N + l ,  N + l ) ) , ( ( N + l ,  N + l ) , ( N + l , j ) )  
and ( ( N + l ,  N +  l ) ,  ( i , j ) )  elements of both sides of (2.5), we obtain respectively 

a ( A ) a ( p )  = ~ ( p ) a ( A )  (2.6) 
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and 

while the last two equations can also be written as 

(2.9) 

(2.10) 

by introducing 

1 
R,(A)'=- ~ , ( A ) u ( A ) - ~ .  (2.11) fi 

The above procedure evidently fails to give the commutation relations between 
scattering state operators and their Hermitian conjugates. The difficulty does not arise 
in the case of a one-component boson for non-linear Schrodinger model where T, , (A)  
and T22(A) are conjugates, and TI2(A), T,,(A) are anticonjugates to each other. In 
order to derive such commutation relations, which are necessary in calculating the 
Green function and S matrix, we have to consider the solution of another Yang-Baxter 
equation. Instead of (2.1), we have 

ipc A - p - ipcN 
A - p  -ipc( N - 1) Q P  + P P  ')= A - p  - i p c ( N -  1) 

(2.14) 

where Qp = Eop@Eop(-p)p 'O'+p(pi  . By an analogous procedure, we arrive at the 
commutation relation 

kbf)(~, ~ ) T ( A ) +  8 T P ' ( ~ )  = T P ' ( ~ )  8 T(A) '~ ; - . ) (A,  p )  (2.15) 
P P 

or their equivalents 

Eri(& p ) - I T p ' ( p )  @ T(A)'  = T ( h ) +  8 TP'(p)kZ-)(h,  p ) - I .  (2.16) 
P P 
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In  the formulae 

ipc 
A - p  

i b " ( A ,  p )  =- E,, 0 E,, 

(A-p)'[A-p-ipc(N-l)] '  
- PEN+I.N+IOEN+I.N+I (A-p- ic ) (A-p- ipNc)  

(2.18) 

Comparing ( ( j , i ) ,  ( N + l , N + l ) )  for j # i ,  ( ( N + l , i ) ,  ( N + l , N + l ) )  and ( ( N +  
1, N + l ) ,  ( N +  1, N +  1)) elements of both sides of (2.151, we obtain 

a ( A ) ' a ( p )  = ~ ( p ) a ( A ) ' .  

From (2.19) and (2.20), we have 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

Similarly, from the comparison of ((i, i), ( N +  1, N +  1)) elements of both sides in 
(2.15), we also obtain 

ic  
A -1.1 -ic 

R, ( p ) ' R ,  ( A  ) + 2 d (  A - p ). R , ( A ) R , ( P ) ' = - P A - p - i C  ' - p  R , ( p ) ' R , ( A ) +  

(2.23) 

Here i = 1,2 , .  . . , N and the double indices i do not mean summation. Thus, we have 
obtained all the necessary commutation relations. 

3. Conserved quantities and their eigenstates 

The asymptotic expansion of a ( A )  for large A can be obtained directly by using the 
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integration by parts to the Neumann expansion for a ( A ) .  It takes the form 
C 1 1 

a ( A ) =  1 - 7  N + z [ - i c P + i c 2 N (  N - l)]+- I A  ( I A )  (iA)3 

x [cH +ic2( N - 1)P-:c3N( N - 1)( N -2)] +O (3.1) 

where 

are the particle number and momentum operators. Finally, we obtain 

Cn 
A "  

In a ( A ) =  - 

(3.2) 
From (2.6), it follows that all Ci are commuting with each other. Hence, N, P, H, . . . , are 
conserved quantities. 

Define the vacuum state 10) by uj(x) lO)=O. It leads to Rj(h)lO)=O. From the 
commutation relation (2.9), we know that the state 

I A I ,  A 2 7  9 * * 9 A n ) =  Rjl(A,)tRj,(A2)t 9 * .  Rj,,(An)+IO) (3.3) 
is the eigenstate of a ( A )  with eigenvalue 

A-Ak+ic 
A ( A ; A l ,  . . . ,  A n ) =  n 

k = l  A-Ak+ie (3.4) 

Therefore, the state is the eigenstate of an infinite number of conserved quantities. 
For the first three conserved quantities N, P, H, the eigenvalues are n, Xi=, Akr  Z k = l  A i ,  
respectively. 

From (3.4), it is obvious that a(A) - '  is analytic in the upper half plane in a weak 
sense. 

n ?  

4. Izergin-Korepin relations and relations between Jost functions 

The quantum analogue of the inverse of a monodromy matrix was firstly established 
by Izergin and Korepin (1981) through an inversion of &, (A)  in the lattice version. 
Izergin and Korepin relations have proved to be very useful to derive relations between 
quantum Jost functions, which form the basis to construct quantum Gel'fand-Levitan 
equations (Smirnov 1982). Here we give a direct derivation in the continuum version. 

Starting from the auxiliary linear (1.5) and (A2.5) and (A2.6) we obtain 
a - T (  x, y lA ) - I  =: T (  x, yl A )-'[ic + JL(x,  A * - ic)+J]:  (4.1) Jx 
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substituting T(x, ylA)-' = exp[c/2(x -y)]S(x, ylA) into (4.1), we obtain the differential 
equation for S(x, ylA) 

a 
ax 
- S(x,ylh)=: S(x,ylA)JL(x, A*-ic)+J: 

S(X, yIA)I.x=Y = IN+'. 
From the solution of (4.2), we arrive at 

T(x, y\A)-'  = exp[c(x -y)/2]JT(x, ylA* - ic)+J. 

(4.2) 

(4.3) 
In a similar way, we obtain 

- TP' ( x, y 1 A ) - I  =: ( JLp' (x, A * - ipNc) "J - $ p N c )  TP' (x, y 1 A ) - I  : 

and 

(4.4) 
a 
ax 

TP'(X, Y ~ A ) - '  = exp[-pNc(x -Y)/~]JTP'(x, Y ~ A *  -ipNc)+'J. (4.5) 
Equations (4.3) and (4.4) can be called the global Izergin-Korepin relations. In the 
lattice version, L,(A) = T ( ( n  + l)A, n A ( A )  for small lattice spacing A, then (4.3) and 
(4.5) become 

(4.6) L, ( A ) - '  = exp( cA/2)JLn( A * - ic)+J 

LE'(A)-'= exp(-pN~A/2)JL,(h*-ipNc)+~J (4.7) 
which are the original form of the Izergin-Korepin relations. 

vectors of N + 1 components by 
Further, we define Jost functions @(')(x, A ) ,  'P(,'(x, A ) ,  a = 1, . , . , N + 1 as column 

@(a'(x, A ) p  = (E(x, A)T'+)(x, A ) J ) a p  

Y ' u ' ( ~ ,  A * ) p  = ( T'-'(x, A)E( -x ,  A)):@. (4.8) 
According to the definitions for T'T) (x, A )  given by (1.6) 

T'- ' (x ,  A )  = lim Ti-'(x, A ) € ( - L ,  A )  
L+,X 

T'+'(x, A )  = lim E ( - &  A)T',C'(X, A )  (4.9) 
L'CC 

where 

T~-'(x, A )  = T(x, -L)A)  

T(L+)(x, A )  = T ( L ,  xlh). 

We can also define @:"'(x, A ) ,  Y?)(x, A )  in analogy to (4.8) 

@P'(x, A )  = ( T ~ ' ( x ,  A ) J ) , ,  

'Pp'(x, A )  = (Ti-)(x, A)+),@. 

If we write TL(A) for T ( L ,  - L l h ) ,  then 

T:+'(x, A - ic)= T,(A -ic)T\-'(x, A -ic)-' 

= exp[c(x+ L)/2]TL(A -ic)JT:-'(x, A ) ' J  

(4.10) 

(4.1 1) 



1180 F-C Pu, Y-Z Wu and B-H Zhao 

in which (4.3) is used. Extracting from (4.11) the following relation: 

TL(A -ic)~'+, .N+,@':N+')(x,  A - ic)  = exp[c(x+ L)/2] 

x [ T , ( A  - ic) i '+I .N+ITL(A - ic)N+I, ,9vJ ' (x ,  A)-9LN+')(x,  A ) ]  (4.12) 

and using the relation 

T,(A - ic ) i '+I .N+I  TL(A - i c ) N + I . ,  = T L ( A ) N + I , , T L ( A ) ~ ' + I , N + I  
which follows from the comparison of ( ( N + l ,  N +  l ) ,  ( N + l , j ) )  elements of both 
sides of (2.4), we obtain 

a(A -ic)-'@"+"(x, A -ic) = e x p ( - i A x ) b , ( A ) a ( A ) ~ ' 9 ' " ( x ,  A ) - 9 i N + ' ) ( x ,  A ) .  (4.13) 

In the derivation, the following asymptotic behaviours for @ p ) ( x ,  A ) ,  P p ' ( x ,  A )  
are taken into account: 

@?'(x, A )  -exp[tiA(L-x)]~." '(x,  A )  

W:"(x, A )  - exp[ - 4 i A  ( L + x ) ] ~ ~ ' ) ( x ,  A )  

@':N"'(x, A ) - e x p [ - ~ i A ( L - ~ ) l @ ) ' ~ + ' ) ( x ,  A )  

P':N+')(x, A )  -exp[$iA(L+x)]P('"+''(x, A )  (4.14) 

when L + CO. 

Equation (4.13) is one ofthe relations between Jost functions. For the other relation, 
we start with the second global Izergin-Korepin relation (4.5) and proceed in similar 
steps as in deriving (4.13). We finally obtain 

@('I(& A -ipNc)=[*(k)(x, A )  - ( , 9 ( N + ' ) ( X ,  A)a(A)'-'bk(A)te'A']T(A -ipNC),k 
(4.15) 

when p = -1. In the derivation, we have used 

(4.16) 

where 1, = -J when p = 1, and 1, = 
the relation 

TL(A -iPNC)k,N+I = (T , (A)~+I ,N+I ) - 'TL(A)~ ,+ , , ,T , (~  -iPNC)kl 

which comes from the equality of ( N +  1, k )  elements of both sides of 

I N + '  = T?'(A -ipNc)-'TP,'(A -ipNc) 

= exp(-ipNc)JTP,'(A)tpJTP,'(A -ipNc). (4.17) 

5. System of Gel'fand-Levitan equations 

From the analyticities for T'+'(x, A ) ,  T'-'(x, A ) ,  it is easy to see that 9 ( N c ' ) ( ~ ,  A )  is 
an analytic function of A for Im A < O  and 9(N+"(x ,  A ) =  EN+l+O( l /A)  for large A ;  
V'')(x, A )  is analytic for Im A > O  and 9""(x ,  A )  = E, +O(l /A) ,  i = 1 , .  . . , N .  Here E,, 
denotes a column vector with all components equal to zero except the cuth component, 
which is equal to unity. 

Let G(x, A )  = a ( A  -ic)- '@(N+')(x,  A -ic), then (5.3) can be written as 

G(x, A )  =exp(-iAx)b,(A)a(A)-'P'''(x, A )  -P""(x, A ) .  (5 .1 )  

From (4.15), we solve for the quantity in the square bracket 

[q(!')(X, A )  - /,,*(N+"(X, h)a(A)t- 'bk(h)teXp(ihX)]= F'"(X, A )  (5.2) 
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where F'"(x, A )  is an operator. By examining the partial differential equations satisfied 
by G(x,A) and F " " ( x , A ) ,  and the boundary conditions for them when x + m ,  we 
conclude that G(x, A )  and F'k'(x,  A )  are analytic functions of A for Im A > O  and 
Im A < 0, respectively (Pu and Zhao 1986).  

If we define 

when Im A > 0 
when Im A < O  f ( x ,  A I  = { :$&z(x, A )  (5 .3)  

then, from what has been discussed above, f(x, A )  is analytic in both upper and lower 
half plane, but with a discontinuity across the real axis: 

discf(x, A )  = -i& exp(-iAx)R,(A)'@J'(x, A ) .  

The Cauchy formula leads to the following dispersion relation: 

This is the first Gel'fand-Levitan equation. 
Similarly, if we define 

when Im A > 0 
when Im A < O  h ' k ' ( ~ ,  A )  = 

k = l , 2 ,  . . . ,  N 

(5 .4 )  

A ER. (5 .5)  

then h ' k ' ( ~ ,  A )  is an analytic function of A in both upper and lower half plane with a 
discontinuity across the real axis 

disc hIk'(x, A )  = lpY(NC1l(x,  A)a(A)'-lbk(A)t exp(iAx). (5 .7)  

The other N Gel'fand-Levitan equations are obtained in a similar fashion 

A E R ,  k =  1 , 2  , . . . ,  N. (5.8) 

Equations (5 .5)  and (5 .8)  constitute the complete system of Gel'fand-Levitan equations. 
Solving the system of (5 .5 )  and (5 .8)  by iterations, we obtain 

From the comparison with the asymptotic expansion of q:4Ll(x, A ) ,  

(5 .10)  



1182 F-C Pu, Y-Z  Wu and B-H Zhao 

the final solution of the field operator uk(x, r )  in terms of Ri( v )  can be written in series 
as 

m 

x RI, ( p  )Rk (po)  n ( vi - p, - I + i E  ) - I  ( vi - pj + is ) - I  exp( ipox - i p&)  
j =  I 

Note that in (5.11), we have substituted R , ( Y ~ ) ~  exp(ih2r) for R , ( v , ) ~  to express the 
field operator as a function of both coordinate x and time r. 

It should be noted that the results in direct problem (3.2)-(3.4) and the inverse 
problem (5.1 1) are the same for both cases of bosons and fermions, but the commutation 
relations between R , ( h )  and R , ( p ) ,  R , ( p ) +  ((2.10), (2.22) and (2.23)) are different. 

Having found the inversion formula (5.1 1) and the commutation relations between 
R , ( h ) ,  Rj (h) ' ,  it is straightforward to calculate the Green function and S matrix. 
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Appendix 1 

The supermatrices in Mp, , (A)  should be used in the case of fermions. However, in 
the case of bosons only ordinary matrices are needed. In order to unify the treatment 
for both cases, we define 

when p = -1 
when p = 1 

when p = -1 

X"' = 

?={: w h e n p = l  

(Al . l )  

(A1.2) 

where p = -1 is for bosons and p = 1 is for fermions. Thus, we have accordingly 

(A1.3) 

(XY)P' = Y"X"' (A1.4) 

( X "  ) = x,, ( - p  ) P (  * )( P (  P ) + I  ) 

For matrix X ,  we define another matrix X' by 

(XP)*@ = ( - p ) P ( e ) + P ( P )  x u p  . 

(A1.5) 

(A1.6) 

(A1.7) 



Q I S M  for multicomponent non-linear Schrodinger model 1183 

The following formulae used in the paper are easy to prove for ordinary matrices 
A, B, D :  

(A1.8) 

(A1.9) 

Appendix 2 

In this appendix, we collect some formulae used in the paper for convenience: 

a 
ax 

a 
ay 

- T(x, ylA)’ = : T(x, ylA)’L(x, A)’: 

(A2.1) - T(x,ylA)’= -:L(y, A) tT(~ ,y lA) t :  

where 

L( x, A ) ’ = - 4iAJ - i&uJ( x )  ENtl. + i&uj (x)  El.N+ 

(A2.2) 

(A2.3) 

(A2.4) 

(A2.5) 

(A2.6) 
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u , ( x ) T ( A )  = ~ ( ~ ) ~ u , ( x ) - i & ~ ‘ + ’ ( x ,  A ) O E ~  + l , , ~ ( - J ( x ,  A )  

T (  A ) u j ( x )  = u j ( x )  T(A)” + i&T‘+’(x, A)E,.,v+, T ‘ - ’ ( x ,  A)” .  
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